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CHAPTER 1
INTRODUCTION

Stochastic theory is a useful tool in the fatigue design of struc-
tures subject to erratic loads from environments such as wind, waves,
earthquakes, etc. The random stress processes which result from such
loads can be described by statistical parameters in models which charac-
terize the material behavior based on laboratory fatigue tests. These
models provide a probabilistic estimate of the number of cycles, or
length of time, to failure of the structure.

Two approaches have been used in applying probability theory to
fatigue 1life prediction. In the first, simplifying assumptions are
made about the distribution of the extrema of the random stress process
which results 1in a closed-form solution for the expected number of
cycles or length of time to failure. The second approach computes
the necessary statistics of the extrema distribution using a computer
simulated random process which is statistically similar to the expected
service stress time history.

In the past, the design engineer has typically chosen to use the
first approach because it is an inexpensive, simple calculation which
is generally thought to result in a conservative prediction of fatigue
life. However, recent studies (5,21,41,43) have shown that this approach
can often be very overconservative and uneconomical, and may even be
unconservative for some cases.

The simulation technique is thought to give a more accurate predic-

tion of fatigue life and generally to result in a more economical struc-



tural design, but it requires expensive computer time during the design
and analysis.

This thesis is an investigation of a technique for more efficiently
simulating a random stress time history for fatigue analysis. Current
simulation techniques synthesize the complete random stress time history,
while for fatigue analysis only statistics of the extrema are required.
Thus, a significant reduction in computation time and cost could be
realized if the correctly distributed extrema could be generated
directly, without the need for superfluous intermediate values. Previous
research by others (43) in this area resulted in such improved tech-
niques applicable to simple, idealized cases. The present work examines
an extrema generating technique which can be applied to a wider variety
of more realistic cases. The development of this technique has led
to new insights about which characteristics of a random stress process
are important to the fatigue problem.

Chapter 2 is a brief review of some of the theory of stochastic
processes and fatigue theory as it relates to this investigation.
The most popular current simulation technique and the general theory
behind the proposed technique are also discussed. The results of an
extensive simulation study of extrema correlations and power spectral
density truncation effects are presented in Chapter 3. A proposed
extrema simulation technique for random processes having a unimodal
power spectral density is discussed in Chapter 4. The adaptation of
this technique to bimodal power spectral densities is described 1in

Chapter 5. Chapter 6 summarizes the important results of this study.



CHAPTER 2

BACKGROUND
This chapter presents the background material in probability,
fatigue, and simulation which relates to this investigation. Section
2.1 reviews the fundamentals of stochastic processes and the statistics
which pertain to fatigue studies. Section 2.2 presents the concept
of accumulated damage and the extension of constant amplitude fatigue
theory to random fatigue. Section 2.3 introduces the simulation of
stochastic processes, and section 2.4 presents the basic theory of

the simulation technique studied in this investigation.

2.1 Stochastic Processes

A stochastic or random process {X(t)} is a family or set of ordered
random variables X(t). The parameter t often denotes time in physical
processes, but can also denote distance or location, or any parameter
which orders the occurrence of the random variables. A random process
is partially described by the probabiiity density function (PDF) of
X(t), px(t;u). The first two moments of px(t;u) are the mean, ux(t),
and variance, oxz(t), of the process. A more complete description
of the process would include the joint distribution of X(t) and X(s),

pxx(t,s;u,v), from which one can find the autocorrelation function,

¢xx(t,s) E[X(t)X(s)], and the autocovariance function, Kxx(t,s)
®xx(t,s) - ux(t)ux(s). In general, a random process can only be com-
pletely described by knowledge of an infinite number of multivariate
distributions.

A more intuitive definition of a random process is that it is

the collection or ensemble of all the possible time histories one might



observe of a randomly varying quantity. An example would be the set
of 5 minute wave records observed at an offshore platform. A single
record from this set is but one realization from the infinite ensemble
of possible records.

A random process is said to be stationary if the choice of the
"time" origin can be made arbitrarily without effecting the statistics
of interest. A particularly useful type of stationarity often assumed

is covariant stationarity, defined by the conditions:
a) ux(t) = uy = constant (2-1)
b) Kxx(t,s) = FXX(s-t) = FXX(T) (2-2)

The second condition above describes a "shift" property for the autoco-
variance: the value of the autocovariance depends only on the time
interval between points, s-t = 1, and not on the individual times of
occurrence. These two conditions imply that the autocorrelation function

also exhibits the "shift" property:
€) Oyy(t,s) = Ryy(s-t) = Ryy(1) (2-3)

A stationary random process is referred to as being ergodic if
averages taken in the time domain for a single realization converge
to the corresponding statistical averages taken across the entire
ensemble. That 1is, one infinite length realization of the process
completely describes the entire ensemble. A stationary process is
usually assumed to be ergodic, unless it is obviously not ergodic.

The information contained in the autocorrelation function, RXX(T),

of a mean-zero, covariant stationary process is often expressed in



a different form as the power spectral density, (psd), of the process

(20,22). The psd Sxx(w) is the Fourier transform of Rxx(r):

Seq(@) = o [ Ryy(1)e” 19T dr (2-4)
The inverse transformation is:
Ryy (1) = [ Syylw)e'™T du (2-5)

~00

Note that in these equations and those which follow, Sxx(w) is

the two-sided psd defined on (-», +o), while the one-sided psd, defined
on (0, +o), is given by Gx(w) = ZSXX(w). The variance of the process,
oi, is given by the autocorrelation at Tt = 0, or the area under the
psd:

[+ <}

ok = EIX?T = Ryy(0) = [ Sy (w)du (2-6)

The variance of the first two derivatives of {X(t)} are given by:

(o]

fu?Syy (0)dw (2-7)

~Q0

XN <X N

_Zw4sxx(w)dw (2-8)

The expected number of up-crossings per unit time of the Tlevel

b by {X(t)} was derived by S.0. Rice (32) as:
+ )
vp = g v pxx(b,v)dv (2-9)

in which pxk(u,v) is the joint PDF of {X(t)} and {i(t)} at time t.
The rate of up-crossings of the mean (or zero up-crossings) is

then:

+ _ % . _
Vo = £ vpyy (0,v)dv (2-10)




The above result leads to an expression for the expected number

of valleys (or peaks) per unit time of {X(t)} as:

np = é wp*x(o,w)dw (2-11)

The ratio of the rate of zero up-crossings to the rate of peak
occurrences, v;/np, is a common measure of bandwidth known as the irregu-
larity factor. The value of the irregularity factor is always between
0 and 1 (because np_gv;), and approaches 1 for a very narrowband process
as the number of peaks approaches the number of zero up-crossings.

A random process {X(t)} is said to be Gaussian (or normal) if
the set {X(tl), X(tz),---X(tn)} is a set of jointly normal random vari-
ables for any choice of n and (tl,tz,---tn). This 1implies that a
Gaussian random process is completely described by its mean, ux(t),
and autocovariance, Kxx(t,s). Further, it can be shown that {i(t)}
will also be a normal process and that {X(t)} and {i(t)} are  jointly
normal processes. If the Gaussian process {X(t)} is also assumed to
be covariant stationary, then X(t) and i(t) are independent  random
variables.

Random processes are often assumed to be Gaussian or normal in
random vibration problems because analytical manipulations are relatively
easy and many actual excitations can be well approximated as being
Gaussian.

Assuming that {X(t)} 1is Gaussian (in addition to mean-zero,
covariant stationary) enables one to evaluate the expressions for v+

0
and np as (7,20,23):



+ 1 9
Vo = 27 oo (2-12)
X
1%
ny = 5 (2-13)

This yields an expression for the irregularity factor of a Gaussian

process:
oY 0.2
Dt (2-14)
p X X

The irregularity factor, as defined by v /np, is a time domain

measure of the bandwidth of a random process. A set of frequency domain

bandwidth parameters may be defined by the equation:

X
ERNTRWRRE: e
2j
in which Aj is the jth moment of the psd:
A= [ w36y (w)do (2-16)
b0

It can be shown that for any j > 0, O

IA

a; < 1, with o, approaching
1 for the limiting narrowband case. Recalling equations (2-6), (2-7)

and (2-8), the bandwidth parameter ay from this family is given by:

.2
i °x (2-17)
Qa ” -
2 [A A4]1/2 OXOX
Thus, for a covariant stationary, Gaussian process, a, = v;/np, and

the irregularity factor has both a time and a frequency domain
definition.
Another commonly used bandwidth parameter related to the aj family

is the parameter q proposed by Vanmarcke (40):



2

A
a0 -af1-1- LgV2 (2-18)
072

The values of q are also bounded by [0,1], but q approaches zero for
the 1limiting narrowband case. Vanmarcke showed that this parameter
also has a time domain interpretation. Based on the definition of
the envelope of a random process used by Cramer and Leadbetter (6)

and S.0. Rice (32), q can be defined in the time domain as:

o
_ R -
q = 5; (2-19)

in which:

Oi The rms of the slope of the process

oé The rms of the slope of its envelope

Thus, q is the ratio of the rate of change of the envelope to the rate
of change of the process. This interpretation breaks down for wideband
processes as the envelope is no longer physically recognizable.

For a Gaussian random process, the probability density function
(pdf) and cumulative distribution function (cdf) of the extrema (peaks

or valleys) were derived by S.0. Rice (32) as:

ua, ua, -u2
PDF: f (u) = —5 [1+ erf ( )lexp(—s)
P 20X oX(2 - 2a§)1/2 20§
1-a 2
+ (—2)1/2 exp(L) —co{[i<e0 (2-20)
ool 262(1-02)
Ox Oxl1%2



1 ~u
CDF: F_(u) = 5 erfc[————1]
p 2 (2-2a§)1/2

ox
o 2 -uaq
- 7; exp( uz)erfc[ 5 ?/2 (2-21)
in which erf is the error function:
] 2 ¥ ¢
- = e t -
erf(u) = g d (2-22a)
erf(«) = 1.0 (2.22b)
and erfc is the complementary error function:
erfc(u) = 1 - erf(u) (2-23)

The S.0. Rice distribution is a function of only the standard
deviation of the process, Oy and the bandwidth of the process as defined
by the irregularity factor, ay- The cumulative distribution function
(cdf), Fp(u), gives the fraction of all peaks which have values less
than u, including negative as well as positive peaks. The fraction
of positive peaks is (1 + a2)/2 and the rate at which they occur is:

n_=n (1 ' az) = 1 ep) X
p P 2 4n

: (2-24
oy )

In the limiting narrowband case (a2 + 1) all of the peaks are positive
and the S.0. Rice distribution reduces to the Rayleigh distribution:
u --u2
fp(u) == exp(——§) 0<u<ow (2-25)
oy 20X
For the limiting wideband process (a2 -+ 0) only one-half of the peaks
are positive and the S.0. Rice distribution reduces to the Gaussian

distribution:



2

1 -

fp(u) = 172 exp( u2) o (Y € (2-26)
Oy 20X

2.2 Concepts in Fatigue

(2m)

The results of a laboratory constant amplitude fatigue test are
usually presented in the form of a plot of the logarithm of the stress
range, S, versus the logarithm of the number of cycles to failure,
N, as in Figure 2.1. The test data is usually best fit by a straight

line, the S-N curve, given by the equation:

-m

N = CS (2-27)

in which C and m are material constants. The S-N curve for ferrous
materials tails off at some low stress range known as the endurance
limit. This is the stress range at or below which the material is
treated as having an infinite fatigue 1life. Non-ferrous materials
generally do not exhibit an endurance limit.

The Palmgren-Miner hypothesis (26,27) gives one technique for
extending the constant amplitude results to the Qariab]e amplitude
case. Each single cycle of stress range Sj is assumed to cause damage
equal to the average damage per cycle in the constant amplitude test,
1/N(Sj). A number of cycles, "j’ at amplitude Sj then use a fraction
of the fatigue life or cause the fractional amount of damage, dj:

n.

dj = NT§?7 at stress range Sj (2-28)

The total fraction of damage at time t, D(t) due to all the cycles
in a variable amplitude time history is then found by summing over

all the stress ranges:

10
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n.
D(t) = ] 7rdy (2-29)
N J

in which D(T) = 1 at failure, T being the time to failure. Extending
this to the continuous case, the expected damage at the time t is given
by:

p (u)du

E[D(t)] = N*(t) | —jray (2-30)

o— 8

in which N*(t) denotes the expected total number of cycles in time

t in a random fatigue test, and N*(t)ps(u)du denotes the number of

cycles in the stress range [u,u + du]. Assuming that N(u) = Cu™ from
the constant amplitude S-N curve, equation 2-30 may be written as:
* o
Efo(t)] = M8 1M (u)du (2-31)
0
*
_ N ét) E[Sm]

in which E[Sm] is the mth

moment of the random stress range distribution.

The Rayleigh approximation (25) assumes that a stress range can
be defined as twice a Rayleigh distribution amplitude. This assumption,
which is strictly correct only in the limiting narrowband case, leads

to a closed form solution given by:

E[D(t)] ”*ét) (2/Z o,)™ (1 + m/2) (2-32)

1 at failure, t =T

in which T(x) denotes the Gamma function.
The expected time to failure, E[T], is calculated by _defining
a cycle as the time between zero up-crossings of the stress process.

This may be written as:

12



*(I)= C 1 (2-33)

+ m
Vo Vo (2/§ox) I (1 + m/2)

e[ty = N

in which vo+ = expected rate of zero up-crossings.

If an actual time history of the random stress process is available
(as from field data or simulation) various cycle-identification tech-
niques exist from which one can directly estimate the stress range
moment, E[S™]. One of the most widely accepted of these techniques
is the rainflow method proposed by Matsuishi and Endo (24). An illustra-
tion of the technique is shown in Figure 2.2. The time history may
be visualized as a cross-section or profile through a water filled
reservoir. The Towest valley is drained, identifying the 2 largest
half-cycles [7-10,10-13], and leaving two smaller valleys full. The
next lowest valley is drained, identifying two half-cycles [1-4,4-7].
Continuing in this manner, the next lowest valleys are drained, and
full cycles [2-3] and [8-9], [11-12] and [5-6] are identified, followed
by half-cycles [0-1], and [13-14] respectively. It can be shown that
the rainflow technique essentially identifies stress cycles as closed
hysteresis loops for a material satisfying the Masing hypothesis.
Several algorithms are available for performing rainflow analysis
(8,9,24), either on an entire time history in a single pass, or sequen-
tially in "real time" as the time history is generated or observed.
The algorithm used in this study was a real-time scheme developed by
Lutes and first employed by Zimmerman (43).

In the following, E[Rm] denotes the stress range moment determined

by rainflow analysis.

13
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2.3 Gaussian Process Simulation

A technique for the simulation of a stationary random process,
herein referred to as the Gaussian technique, was first indicated by
S.0. Rice (32). The Gaussian technique is well known in the literature
and has become a standard method of simulating stationary, Gaussian
random processes (2,5,35,36,41). The technique synthesizes a realization
of the random process {X(t)} from the one-sided psd Gx(w) according
to the equation:

M

X(t) = T [2006, ()1 sinut - 4,) (2-34)
i1 i i i
in which:
Aw = frequency interval
GX(wi) = ordinate of one-sided psd at w;
w; = midpoint of frequency interval
¢ = independent, identically distributed (i.i.d.) random

phase angles, uniform on [0,27]

X(t) is approximated as the sum of M sine wave components having random
phase angles ¢s and of amplitude [2Awa(wi)]1/2. The normality
of X(t) is ensured for large N by the Central Limit Theorem (1,28,29).
For a constant frequency interval, Aw, X(t) will be periodic with period
T = 2n/Mw. This periodicity may be avoided by using a randomly varying
Aw or by selecting a new set of random phase angles {¢i} at the end
of each period.

The process formed by the extrema of {X(t)}, the envelope process,
is usually of more interest than the process itself for problems in

the analysis of first excursion probability, fatigue, and crack propaga-



tion. Simulation of the extrema (peaks and valleys) by the Gaussian
technique can be very laborious because the exact location of the extrema
is not known and an extremely large number of sample points must be
generated to accurately define the peaks and valleys. For fatique
analysis this technique becomes even more inefficient because the rain-
flow cycle identification technique discards all sample points but
the peaks and valleys, which are necessary to define the stress ranges.

Yang (42) recognized this inefficiency and proposed a technique
for simulating a random envelope process which utilized the Fast Fourier
Transform. Yang's technique, however, is best suited to narrowband
processes which have a well defined period, To’ at which the envelope
process 1is sampled to generate the extrema. For wideband processes,
the problem is again one of knowing the location of the extrema, or
of knowing at what times to sample the envelope process.

Zimmerman (43) also recognized the inefficiency of the Gaussian
simulation technique for fatigue analysis and studied three alternate
techniques which produced correlated sequences of extrema having either
the Rayleigh or the S.0. Rice distributions. His work avoided the
uncertainty about the time of occurrence of the extrema and when to
sample the process by looking directly at the extrema as a correlated
sequence of random variables. This approach introduced the parameter
P> the correlation between extrema k steps apart, and the problem
of determining how the extrema correlations relate to the more commonly
used statistics of a random process. Zimmerman empirically related
Pys the peak-valley correlation, to bandwidth as described by @y and
with this information was successful in directly simulating correlated

sequences of Rayleigh (Zimmerman's Technique III) or S.0. Rice (his

16



Technique IV) distributed extrema. Simulation Technigque IV was found
to be three to four times faster than the Gaussian technique and gave
comparable rainflow analysis results. These techniques were applied
by Sarkani (34) to generate random loadings for an experimental study
of fatigue in welded joints.

Zimmerman's techniques are only valid for the special case of
unimodal (or "1-block") psd's which are sufficiently described by the
parameter Py Attempts to extend his techniques to bimodal (or
"2-block") psd's were frustrated by the unsolved problem of relating
the behavior of the extrema correlations to any spectral parameters.
For bimodal psd's, Pl is insufficient to describe the relationship

between extrema and Zimmerman's techniques are not applicable.

2.4 Autoregressive (AR) Processes and Simulation

A very versatile set of models for scalar (univariate and one-dimen-
sional) random processes, known as Autoregressive Moving Average (ARMA)
models, is described by Box and Jenkins (3) and Jenkins and Watt (19).
These time series models have found wide application outside of struc-
tural engineering, primarily in economic or business forecasting.
ARMA models have only recently been applied to structural engineering
problems (33). Gersch (10,11,12,13,14,15,16,17) used ARMA time series
techniques to synthesize the response of linear structural systems
to stationary random excitation. Reed and Scanlan (31) modeled cooling
tower wind loadings, and others have utilized the method to model sea
waves (37,38) and earthquake ground motions (4,18,30).

The general ARMA(p,q) model of a stationary random process is

given by:

17
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in which the present value of the random process, Z is expressed

t’
as a weighted sum of the past p values of the process,

{Zt-l’zt-Z""’Zt-p}’ a weighted sum of the q + 1 random variables

{at’at-l’at-Z,-~-,at_q}and a constant term u. The sequence {a } fis
generally assumed to be of i.i.d., mean-zero, normal variates. The

ARMA(p,q) model has p + q + 2 parameters (¢1,¢2,--', 9,610

. g1ttt
¢] ,u,og) which must be estimated from data on the process to be modeled.

q

Box and Jenkins (3) note that in practice the number of unknown coeffi-
cients usually need not be greater than 2 for either p or q. The random
variables {ak} are sometimes known as the residuals because they repre-
sent the residual, random factor that is not accounted for in the deter-
ministic part of the model (the relationship between the current value,
Zy» and the past values, {Z,_,}).

A special form of the ARMA(p,q) model is the autoregressive, AR(p),
model (q = 0):

Lo = 012y g * dply p + et ¢pzt-p tag tu (2-36)
in which the current value of the process is expressed completely by
a weighted sum of past values, {Zt-l’zt—Z""’Zt-p}’ a random variate
a;» and a constant u. The AR(p) model has p + 2 unknowns (¢1,¢2.---,

¢ ,u,og) which must be estimated.

P

The autocorrelation, P> between Zt and the value Z_,, , separated

t+k
by k intervals of time, is defined as:

18



_ E[(Zt = u)(zt+k - u)]
EL(Z, - W)

The autocorrelation function for an AR(p) process is given by

Qk (2'37)

the difference equation:

-

Pk T 1Pkl T 0Pk2 T T Y BpPip (2-38)

Note that this equation is analogous to the difference equation satisfied
by the process itself. By successively substituting k = 1,2,---p into

this equation, a set of linear equations is obtained for ¢1,¢2,---,¢p

in terms of Pys Pps*t P Replacing the theoretical {ok} by their

D’
estimates obtained from the data, {rk}, gives the Yule-Walker estimates

for the {;k}:

~ _ _1 _
[¢] [Rp] [rp] (2-39)
in which
[¢] = ?1
\J)
%

[Rp] =11 " ro . o-1

8] 1 ' rp_2

r r r 1

p-1 p-2 p-3

19



[r,] = [y ]

r
P

T

Box and Jenkins (3) show that these estimates approximate the fully
efficient maximum likelihood estimates.

For the most common AR(1) and AR(2) processes, the parameter esti-

mates are:
AR(1): ‘;1 = (2-40)
N rl(l - r2)
AR(2): ¢y = (2-41)
l-r
1
2
- 27"
2 2
1 - rq
The variance of an AR(p) process is:
02
2 a
oy = A (2-42)
VA 1- Ql¢>1 - 02¢2 = 0p¢p

Substituting {rk} for {ok} and the estimate Co for o;, the variance

of the residuals {ak} is estimated by:

A2- N N e s & _A -
o, = Co(l - 9qry - by - ¢prp) (2-43)

For the AR(1) and AR(2) process, this becomes:

AR(1): o2 = € (1 - r{) (2-44)
2 2
R ri(l-ry)  ro(r, - r.%)
AR(2): o2 = C [1- -t 22 .22 17, (2-45)
a 0 1 - Y'% 1 - T’%



One can show that the AR(1) process is a Markov process. Zimmerman's
techniques III and IV (43) are of the AR(1) type, although they are
not expressed explicitly in this form. The present work is intended
to extend the concept of modeling the extrema of a random process as
a sequence of correlated random variables, as used by Zimmerman for
1-block psd's, to a more general technique adapted from the ARMA(p,q)
or AR(p) family of stochastic models. Chapters 4 and 5 discuss the
details of parameter estimation and the modifications to the AR(p)

model necessary to synthesize correlated extrema.




CHAPTER 3
GAUSSTAN SIMULATION RESULTS

Chapter 3 presents the results of a study of four psd types for
which time histories were simulated using the Gaussian technique of
Section 2.3. The psd's studied are shown in Figure 3.1.

The psd of Figure 3.la is a band-limited white noise approximation
to a unimodal psd, herein referred to as a 1-block psd. It is charac-
terized by a constant squared amplitude, G, over the frequency range
Wy to Wy Bimodal psd cases were formed by the superposition of two
1-block psd's, as in Figure 3.1b. These cases, referred to as 2-block
psd's, are characterized by the squared amplitude levels G1 and GZ’
and the frequency ranges Wy to Wy and Wy to wg- These parameters

are related through the frequency ratio:
r = w3/wl = w4/w2 (3-1)
and the area ratio:

b= A2/A1 (3-2)

in which A1 area of block 1

A2 = area of block 2
A more realistic unimodal psd shape was investigated using a form
previously studied by Wirsching and Light (41), shown in Figure 3.2c.

This psd has a form given by:

Gylw) = % exp (-8/0”) (3-3)
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in which K = 38 for E[Xz] = 1. This form presents some analytical
difficulties because its fourth moment, Ags is not finite, so the irre-
gularity factor for this psd is zero (a = 0). In addition, this psd
does not have a known Fourier transform, so an analytical expression
for the autocorrelation function, RXX(T), is not known. Because of
these difficulties, the unimodal psd of Figure 3.1d was also studied.

It has a convenient form given by:

By (w) = c/lz_ﬂ exp[-(w- u)2/2¢%] (3-8)

in which: u = center frequency

1t

¢ = a shape factor

This form is analogous to a Gaussian or normal probability density
function (pdf), for which Ag is finite and for which the Fourier trans-
form is well known.

Parameter values for the specific psd cases studied are tabulated
in Appendix A.

The simulation results of interest in these studies were the
expected damage per unit time and the extrema correlations. For bimodal
psd's, the relative contributions by the modes to the damage rate are
discussed in Section 3.1. In Section 3.2, results are presented for
unimodal psd's on the effect of high frequency psd truncation on the
damage rate. Finally, the characteristics of the extrema correlations
are presented in Section 3.3, providing a basis for the autoregressive

models described in Chapters 4 and 5.
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3.1 PSD Component Contributions to Damage

The effect of truncating high and low frequency psd components
was studied for the 2-block type bimodal psd's. The goal of this study
was to determine empirical limits beyond which a sufficiently accurate
rainflow damage prediction may be obtained by considering the psd to
be unimodal.

The expected damage rate is defined as:
d/t = n E[R"](1 + b)™/2 (3-5)

For this study, the additional factor (1 + b)m/2 has been added
to normalize the results such that the psd's all have a low frequency

component of unit area.

The normalized damage rate, d/do, is defined as:

d _ d/t (3-6)
do do/t
in which: do/t is the d/t for b = 0 (1-block psd).

A normalized area ratio, brz/m, is also defined in which:

b = A2/A1

r = w3/w1 = w4/w2

m = material constant from Equation (2-27)

2/m

The normalized damage rate, d/do, is shown as a function of br
for m = 3 in Figure 3.2. Corresponding plots for m = 5 and m = 7 are
given by Figures 3.3 and 3.4, respectively.

The two asymptotic 1limits shown in these figures are evaluated

as follows.
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For b = 0, the bimodal psd reduces to a unimodal psd corresponding
to the low frequency block of the bimodal psd. For the particular

psd's studied, using Equation 2-13 to evaluate np gives:

1 ,3. 06006)1/2

Ny =2 (5301 (3-7)

The value of the range moment, E[R™], was determined from unimodal

simulations as:

29.79 form =
E[R™] ={¢ 593.9 for m = (3-8)
16,550 form =

The low frequency asymptotic limit (b = 0) for the damage rate is then:

d 4.781 form = 3
+ =4 95.30 for m = 5 (3-9)
2,656 form =7
Evaluating np for the general bimodal psd case gives:
4
1 3.06006 (1+br’) 1/2
no =3[ ] ' (3-10)
p 2n 3.01 (1+br‘2)
and Equation 3-5 gives the damage rate as:
m
. +
%_= EE&IJ [3 2?22? (1 br )]1/2 (1+—b)m/2 (3-11)
: (1+br)
Recognizing that for a 1-block psd (b = 0):
d
o _ E[RM 3 06006 1/2
t o 3.01 ) (3-12)
Equation 3-11 may be rewritten as:
= (Qi_br_)] (1 + b)"? (3-13)
0 (1+br )
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Now as b tends to infinity, the bimodal psd reduces to its high fre-

quency, unimodal component. Thus, for large b:

4 4
(+br)ql/2  (bryl/2

5 —s r (3-14)
(1+br")

br2
and (1 + b)V2 = pM/2 (3-15)

The high frequency (large b) asymptotic limit is thus:

d _ .2
dO

(3-16)

Errors in the rainflow damage estimate as large as 20% are
often acceptable 1in practical fatigue analysis. Using this accuracy
level, the limiting area ratio below which the high frequency component
mode may be neglected was estimated to be in the range of b = 0.1 to
b = 0.01 for r = 1.5 to 15, respectively. Similarly, the Tlimiting
area ratio above which the low frequency component mode may be neglected
was estimated to be from about b = 10 to b = 2 for r = 1.5 to 15, respec-
tively. The region for which bimodal effects may not be neglected
is also illustrated in Figure 3.5. This figure gives Vanmarcke's band-
width parameter, q, as a function of b and r for 2-block psd's. The
central region bounded by the dashed lines for m = 3,5,7 denotes the
combinations of b and r for which the bimodal effect is significant.
Overall limits for the region for which bimodal effects are important,
bounding the effects due to m and r, are from b = 0.01 to b = 10.
Psd's with area ratios outside this range can be considered to be uni-

modal for practical purposes.
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3.2 High Frequency Truncation Effect

The effect of high frequency psd truncation on the rainflow damage
rate was also studied for the two unimodal psd types of Figure 3.1c
and d. A rainflow analysis was performed using various high frequency
cut-off levels. Average results for m = 3,5,7 are plotted in Figure
3.6 as normalized damage per unit time, d/do, versus a normalized cut-off
frequency parameter, u. The expected damage per unit time is defined

as:
d/t = an[Rm] (3-17)
in which: np = expected rate of peak occurrences
E[Rm] = the mth moment of the rainflow ranges
The normalized damage per unit time is defined as:
d/d, dfj-;'— (3-18)

in which: do/t = d/t for Unax
The normalized cut-off frequency is defined as:

w-Al

u = (3-19)
2177
2" M)

f

in which: w, = cut-off frequency

A

1l
o

1 1st moment of psd about w

2nd moment of psd about

"
o

Ay

Note that u is analogous to the standardized variate for a normal

distribution, U = (X - u)/o.
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Assuming again that as much as a 20% error is acceptable in
the rainflow damage estimate, a high frequency cut-off of about u =
2.0 can be used with the psd defined by Equation 3-3. For the "normal"
form psd (Equation 3-4), which decays much faster (as e'wz), a cut-off
of u = 1.0 is sufficient for a rainflow damage estimate accurate to
5%.

It was found that these results could be presented in a more uniform
manner, such that the data for both psd types defined approximately
a single curve, by using a frequency cut-off parameter q/qo, in
which q is Vanmarcke's bandwidth parameter (Equation 2-18) for the
psd with high frequency cut-off We s and 9 is the theoretical q for
the psd with we = > For the psd defined by Equation 3-3, 9, = 0.5613,
while 9, © 0.1961 for the psd given by Equation 3-4. The average (for
m = 3,5,7) normalized damage rate, d/do, as a function of q/qo,
is shown in Figure 3.7. These results indicate that truncation of
a unimodal psd at a ratio of q/qo = 0.6 or greater should result

in less than a 20% error in the rainflow damage estimate.

3.3 Extrema Correlations

Modeling the extrema (peaks and valleys) of a random stress time
history as an autoregressive (AR) process requires knowledge of the
pdf of extrema and the extrema correlations. The pdf for the extrema
is given by the result due to S.0. Rice, equation 2-20. At this time,
however, no analytical result exists which describes the extrema correla-
tions.

Empirical estimates of the extrema correlations were computed

as part of the simulation studies previously described. For modeling
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the extrema as an AR process, the correlation of prime importance is
the peak-to-valley or 1l-step correlation, - But in many cases
the greatest peak-to-valley (P-V) correlation does not occur at one
time step apart, or lag one, but occurs several time steps or lags
later. This most significant F-V correlation will be denoted as Ppy

Figure 3.8 presents Py plotted versus Vanmarcke's bandwidth para-
meter, q, for bimodal psd's. Several trends are evident. First, Py
tends to -1 as q tends to zero, as expected for the limiting narrowband
case. The apparent scatter in the data is the result of two effects.
If data points of constant frequency ratio, r, are connected, a shift
downward (decreasing pl) can be identified with increasing r, as shown
in Figure 3.9. A second trend becomes evident if for a constant r
the data points are connected in order of decreasing area ratio, b,
as shown in Figure 3.10. Starting in the lower left (with the limiting
narrowband case), Py increases nearly linearly with q as b decreases,
until some limiting value is reached beyond which further reductions
in b reduce both q and Py This latter portion of the curve, however,
does not return back along the initial path, but loops back at a higher
0q for a given q.

These trends indicate that q is not the ideal spectral parameter
to use to describe the variation of correlation with bandwidth. Ideally,
one would use a parameter which was insensitive to changes in r and
for which py Wwas uniquely determined. What this ideal parameter may

be is unknown at this time.
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The relation between Py and q can be used, however, if the
relatively weak dependence on r is neglected and if only practical
ranges of b are considered. The return portion of the correlation
curve is essentially eliminated if the only values considered are those
corresponding to area ratios (b) for which bimodal effects may not
be neglected, as determined in the Section 3.1. (See Figure 3.5) The
resulting relationship between Py and q is shown in Figure 3.11 and

is given by the following equation:
Py = 2.45q - 1.14, 0.057 < q < 0.873 (3-20)

which is a linear regression of Py ON q. Although the fit is imperfect,
it is good for practical purposes, especially for unimodal psd's.

The extrema correlations for random processes having unimodal
psd's are well behaved, as shown in Figure 3.12. In this figure and
those which follow, the expected time of occurence for the kth extremum
is k/2np. The most significant peak-to-valley correlation (ppv) occurs
at lag one (k=1), and the other correlations decay rapidly in an alter-
nating manner. This makes it possible to model the extrema with an
AR process based only on the lag one correlation, Py This  will
be discussed in more detail in Chapter 4.

The extrema correlations for bimodal psd processes are not as
well behaved. For example, Figures 3.13 through 3.15 illustrate how
the first 10 extrema correlations change as a function of b for a 2-block
psd having r = 7. Note that in many cases Py is not the most significant
peak-to-valley correlation (ppv) and may even be positive. Which
P-V correlation is most significant appears to be a function of both

b and r. As b is increased from zero, the lag at which ppy occurs
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changes from k =1 to k = 3, to k = 5,---until a limiting value of
k = r is reached at about b = 1. As b is increased further the lag
at which ppy Occurs decreases, finally coming back to k = 1 at large
b values.

This behavior seems reasonable if the random process is visualized
as the superposition of two narrowband processes. For very small values
of b, the low frequency component is dominant, with only a low level
of the high frequency component superimposed as a "noise" in the signal.
The significant extrema will be the peaks and valleys of the low fre-
quency component, and Py will be the dominant correlation. (See Figure
3.16.) At higher b values, the high frequency component becomes
increasingly significant, so that the most significant valley following
a large peak (and thereby giving a large rainflow range) no Tlonger
occurs immediately after that peak, but comes some n lags later. (See
Figure 3.17.) At still higher b values, the high frequency component
dominates and the low frequency component only appears as a slow wander
about the mean. The most significant extrema correlation (and rainflow
range) again occurs between adjacent peaks and valleys. (See Figure
3.18.)

This phenomenon is difficult to observe directly from a psd, but
is easily seen in the autocorrelation function. As an example, Figures
3.19 through 3.24 show the RXX(T) corresponding to the extrema correla-
tion cases presented in Figures 3.13 through 3.15. Note that in Figures
3.19 through 3.24 the upper figures are all to the same time scale
to indicate how the change in area ratio, b, effects RXX(T) and the
frequency content of {X(t)}. The time scale in the Tlower figures has

been adjusted so that about the first 10 extrema of Rxx(T) appear,
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Figure 3.19 Autocorrelation Function: r =7, b = 0.001
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for purposes of comparison with Figures 3.13 through 3.15. The qualita-
tive correspondence between the extrema of Rxx(r) and the extrema cor-
relations of {X(t)} is very good in some cases, and the most significant
extrema of Rxx(r) can be an indicator of which P-V correlation will
be most significant. Because of this qualitative correspondence between
the extrema of RXX(T) and the extrema correlations of {X(t)}, it may
be possible to develop an analytical method for obtaining the extrema
correlations directly from RXX(T), but at this time the problem remains
unsolved.

Appendix E presents the results of some efforts in this direction
which, although they were not completely successful, have contributed
to an improved understanding of the effects of random occurrence times
and phase.

The complex behavior of the extrema correlations of processes
having bimodal type psd's complicates the task of modeling the extrema
as an AR process. Information is needed about both Py and Ppy @S
functions of bandwidth (or b and r). This introduces the difficulty
of first predicting the lag at which Ppy will occur, and then
of estimating its value. A technique for dealing with this problem
is presented in Chapter 5 on the AR modeling of the extrema for bimodal

psd's.
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Chapter 4
AUTOREGRESSIVE SIMULATION: UNIMODAL PSD'S

This chapter describes the AR simulation technique as applied
to random processes having a 1-block or unimodal type psd. Section
4.1 briefly reviews the characteristics of the AR(1) process previously
presented in Section 2.4. Section 4.2 describes the specific application
of AR(1) models to the simulation of extrema processes. The results
of AR simulations are compared to those from Gaussian simulations in
Section 4.3. Specifically, the rainflow range moments, E[R"], are
compared as a measure of the accuracy of the simulation, and the relative

computation times are compared as a measure of computational efficiency.

4.1 AR(1) Processes

The AR(1) process is a particular case of the general ARMA(p,q)

family (see Section 2.4) and is determined by the equation:

Zt = ¢12t_1 + a, +u (4-1)

[

in which: Zt current value of process

Z,_, = previous value of process

¢y = autoregressive weighting parameter
at = current value of random variate
u = constant

Recall that the parameter 1 is estimated by the autocorrelation observed

at lag one:

A

¢1 = rl (2-40)
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and that the random variates {ak} are usually i.i.d., mean-zero, normal

variates, with variance estimated by:

/\2-
0. = Co(l -

2
a )

(2-44)

in which Co is the estimate for ozz. The autocorrelation function

for an AR(1) process is given by:

o) = 80y K = 1.2.3,... (4-2)

given that ¢y = 0y Equation (4-2) implies that the correlations

for an AR(1) process satisfy the relationship:
o. = [p ]n n=2,3,4 (4-3)
n 1 LR T AT

4.2 AR(1) Application to Extrema Processes

Modeling the extrema of a random process by an AR(1) model required
several innovations. First, because AR models define the present value,
Zt’ as a sum of past values, the Central Limit Theorem may be invoked
to conclude that the pdf of Zt must approach a normal distribution.
But the peaks (or valleys) of a Gaussian random process are known to
have the S.0. Rice distribution, not a normal distribution. This diffi-
culty was solved by mapping the extrema from the normal distribution,
after the AR simulation, to the S.0. Rice distribution. The mapping
of the extrema from the standard normal, N(0,1), distribution to an
$.0. Rice distribution was performed using a two-stage table look-up
procedure based on the inverse transform technique (1,28). Two tables
or arrays were evaluated at the beginning of the simulation, the first

giving the standard normal cdf from -2.75 to 2.75 at 512 points, the
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other giving the S.0. Rice cdf from -1.50X to 5.50X at 512 points.
For the mapping, a table look-up or search was first performed on the
normal cdf array, mapping each point Zt to a point Yt on the range
[0,1]. A second table Took-up on the $.0. Rice cdf array then mapped
each point Yt to a point Xt' This procedure is illustrated in Figure
4.1. The result at this point in the simulation was a sequence of
S.0. Rice distributed, correlated peaks. The sequence of peaks and
valleys required to perform a rainflow range identification was generated
by simply changing the sign on alternating peak values. The simulation
process is illustrated in Figure 4.2, showing the forms of the distribu-
tions at the various stages in the procedure. An outline of the simula-
tion algorithm is given in Figure 4.3.

Two parameters are required for the simulation procedure: the
AR(1) parameter, by and the irregularity factor, a. The parameter
¢1 determines the correlation between adjacent simulation values and
may be estimated as the negative of the peak-to-valley correlation,
Py given in Figure 3.11, or by Equation 3-20. The irregularity factor,
a, which is needed to determine the S.0. Rice distribution used in
the mapping 1is determined from the psd using Equation 2-17. Thus,
the two spectral parameters q and o are the essential inputs required
for the AR(1) simulation technique. The specific parameter values
used for the AR(1) simulations are tabulated in Appendix C.

The mapping from the normal distribution to the S.0. Rice distribu-
tion is nonlinear. Because of this nonlinearity the correlations between
simulated points would be expected to be changed by the mapping. This

potential effect was studied during the Gaussian simulations described
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AR(1) Model Z, = ¢.1 +a

t T17t-1 t

Simulation

Sequence of
Correlated
llormal Randonm
Variables

Mapping

Sequence of
Correlated

S. 0. Rice
Distributed
Random Variables

Alternate
Signs

Sequence of Correlated Extrema
Figure 4.2 Autoregressive Simulation Technique
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1)

Figure 4.3
AR(1) SIMULATION ALGORITHM

Input Data: a, ¢

Generate Arrays:

FP - S.0. Rice CDF, Determined By a
BG - Standard Normal CDF, N(0,1)

Compute Standard Deviation Of AR(1) Process:

SD = (1 - ,%)7 1%

AR Simulation:

enerate N(0,1) Random Variate, U

no ¢1*wn-1 +U

n wn/so

Return To a) Until Required Number Of Points Simulated

a) G
b) W
c) 1
d)

Map From N(0,1) To S.0. Rice (a):

a) Look-up Yn Corresponding To Zn From Array BG
b) Look-up Xn Corresponding to Yn From Array FP

Generate Peak-Valley Sequence
Xn = -Xn For n 0Odd

Perform Statistical And Rainflow Analysis On Xn Sequence As Required
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in Chapter 3. By mapping the Gaussian simulation extrema from the
S.0. Rice distribution to the normal distribution, and recomputing
the extrema correlations, the actual change in the correlation due
to the mapping was found. Note that this mapping procedure is simply
the inverse of the mapping process used in the AR(1) simulation algorithm
to go from the normal distribution to the S.0. Rice distribution.
The effect of this mapping on the lag one correlation, Py is summarized
in Table 4.1 for several unimodal and bimodal psd cases. It was found
that if the mapping changed the correlation, it was always to make
pq more positive. However, the magnitude of this change was very small
and was no more than the change in Py observed between separate Gaussian
simulation realizations for a particular psd. Therefore, the effect
of the nonlinear mapping on the extrema correlations was neglected

in the AR model.

4.3 Simulation Results

The results of the AR(1) simulations and rainflow range identifica-
tion are compared to the results obtained using the Gaussian simulation
procedure in Figures 4.4 through 4.6. The results are plotted in terms
of the expected range moment, E[R"], as a function of Vanmarcke's band-
width parameter, q, for m = 3,5,7, respectively. As shown, the AR(1)
simulation technique closely reproduces the range moments obtained
with the Gaussian method. Note that the value of E[R™] approaches
the theoretical value of E[S"] for the limiting narrowband case, as
given by Equation 2-32.

A comparison of the required computation time for the two methods

showed that the AR(1) technique averaged 11.7 times faster than the
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Gaussian technique. This comparison was made to Gaussian simulations
which synthesized X(t) as a sum of 20 harmonics or psd components,
(N = 20 in Equation 2-34) and which used relatively large time steps,
such that approximately every fourth point in the time series 1is an
extremum. These two conditions represent approximate limits on the
efficiency of the Gaussian technique in that the use of fewer than
20 harmonics may bring into question the normality of the signal, while
the use of larger time steps will decrease the accuracy of the extrema
determination. Actual simulation time on an IBM AT Personal Computer
(with a math coprocessor) for a sequence of 4,000 extrema averaged
7 minutes 24 seconds using the Gaussian technique. The AR(1) method

required only 38 seconds for the simulation of 4,000 extrema.
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PSD Type
Unimodal

Bimodal
r:

-
[]

2.0

3.0

4.0

5.0

6.0

7.0

Table 4-1

EFFECT OF MAPPING PROCEDURE ON CORRELATION Py

.058
115
.160
.225
.297

.097
.247
.321
.336

.098
.332

En
¢TIV

.503

.098
. 384
.517
.600

.098
.427
.557
.668

.098
.429
.583
713

.098
.441
.602
.745
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S.0. Rice Normal
-.95 -.94
-.84 -.82
-.73 -.71
-.57 -.55
-.34 ~.32
-.90 -.88
-.52 -.49
-.30 -.29
-.32 -.30
-.90 .89
.27 -.26
.08 .09
.19 .20
-.91 -.89
-.17 -.16
.24 .24
.43 .43
-.91 -.90
-.05 -.04
.33 .33
.58 .58
-.91 -.90
-.09 -.08
.36 .36
.68 .68
-.92 -.90
-.09 -.07
.37 .38
.74 .74
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Chapter 5
AUTOREGRESSIVE SIMULATION FOR BIMODAL PSD'S

This chapter discusses the adaptation of the AR(1) simulation
technique for unimodal psd's to certain special cases of bimodal psd's.
These special cases are the 2-block psd's described in Chapter 3.

Section 5.1 briefly discusses the difficulties encountered in
modeling a bimodal psd extrema process with an AR(p) or ARMA(p,q) model.
In Section 5.2 the details of the modifications to the AR(1) model
are presented. Section 5.3 is a comparison of the results of the pro-
posed technique to the Gaussian simulation method, in terms of predicted

range moments and required computation time.

5.1 Bimodal PSD Process Modeling Difficulties

As discussed in Section 3.3, the extrema correlations for bimodal
psd processes exhibit a complicated behavior which is a function of
both b and r. (See Figures 3.13 through 3.15). Information about
01205 " *Ppy aS functions of bandwidth would be required for applying
either an AR(p) or ARMA(p,q) type model. However, the usefulness of
such a model is limited by the number of parameters required to define
it.

An AR(p) or ARMA(p,q) model is determined by the ARMA parameters
¢1,¢2,---¢p, and 61,62,-'-eq, which may be estimated as functions of
the extrema correlations, which in turn must be described in some form
as functions of bandwidth (or b and r). A high order ARMA(p,q) model
would be needed to reproduce the complex behavior of the extrema correla-
tions P13Pps" " *Ppy- Thus, using an AR(p) or ARMA(p,q) model to directly

simulate the extrema of a bimodal psd random process would require
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considerable effort in estimating a large number of parameters. However,
a much simpler adaptation of the AR(1) model which seems promising

is discussed below.

5.2 Adaptation of the AR(1) Model

Rather than modeling the extrema of a bimodal psd process as an
ARMA(p,q) process with many parameters, the technique proposed herein
is to model the extrema process as the superposition of two AR(1) models.
The 2-block psd's described in Chapter 3 were all composed of two narrow-
band single blocks, and for such a single block psd the AR(1) model
has been shown to produce damage predictions comparable to those obtained
using the Gaussian technique. The following development attempts to
simulate the extrema for a 2-block psd by superposition of two AR(1)
models (one for each block), with the superposition depending directly
on the frequency ratio, r, and the area ratio, b.

The superposition technique is most easily implemented for psd's

th extrema of the

which have odd integer values of r, so that every r
high-frequency AR(1) component matches an extremum in the low-frequency
AR(1) component. An interpolation of the low-frequency component at
r-1 points between its extrema is also necessary in order to augment
this component with intermediate points corresponding to the "unmatched"
extrema in the high frequency component. The superposition of the
two components can then be performed. The relative contribution of
the two components to the variance of the random process {X(t)} is

determined by the psd area ratio, b, and is provided for by scaling

each component prior to the superposition.
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The superposition introduces an approximation by assuming that
the two components have extrema which exactly coincide in time, whereas
this is not true for the actual random process. The effect of this
approximation should be to overestimate the stress ranges when r is
an odd integer, because each peak in the low frequency component matches
a peak in the high frequency component and each valley matches a valley.
See Figure 5.1a.

When r is an even integer, however, the effect of the superposition
is to underestimate the stress ranges, because now a peak in one of
the components may match with a valley in the other. See Figure 5.1b.
This effect can be expected to grossly distort the simulated time history
and stress ranges. As r becomes large, though, this error is reduced
because for each peak (or valley) in the low-frequency component there
is a peak (or valley) very close to it in the high-frequency component.
See Figure 5.1c. An approximate value for r beyond which this effect
may be neglected without significant 1loss of accuracy is discussed
in Section 5.3.

The extension of the superposition to the general case of non-
integer values of r requires interpolation of both the high and 1low
frequency components because in general the extrema in the components
no longer correspond in time. Thus each component must be augmented
by intermediate points which correspond in time to the extrema in the
other component.

The key to performing the required interpolation is to note that
the psd frequency ratio r gives the number of high frequency component

extrema which occur for each low frequency component extremum. For
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example, a value of r = 3.5 means that "3 and 1/2" extrema occur
in the high frequency component for each low frequency extremum. Of
course, the extrema are actually integer numbered. Thus, to superimpose
the two components the high frequency component must be interpolated
after every 3rd extremum to find a value to match with a low frequency
extremum.

In general, the largest integer less than r, INT(r), gives the
extremum multiple after which an interpolation must be made, and the
fractional (or non-integer) part of r, r-INT(r), gives the "time" after
this extrema at which the high frequency component must be interpolated.

Similarly, the inverse of the psd frequency ratio, 1/r, determines
the points at which the low frequency component must be interpolated
to provide values matching the high frequency component extrema. See
Figure 5.2.

The general interpolation equation used in the simulation algorithm

is:

(1) = X(E+1) o

)+ X(i)+X£1’+1) (5-1)

<
n

interpolated value

>
n

extrema sequence being interpolated

X(i) = X(mn), m = 1,2,3,...

n = INT(r)
X(i + 1) = X(mn+1)

e = r - INT(r)
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The outline of the algorithm to perform the general AR(1) superposition

technique, for any r > 1, is given in Figure 5.3.

5.3 Simulation Results

The expected rainflow range moments computed using the proposed
AR(1)-superposition technique are compared to the results obtained
by the Gaussian simulation procedure in Figures 5.4 through 5.6. The
expected range moment, E[R™], (m = 3,5,7) is plotted as a function
of Vanmarcke's bandwidth parameter, q, for several values of the 2-block
psd frequency ratio, r, from r = 1.5 to r .= 10.0. (See Appendix E
for parameters of the cases simulated.)

Note that for values of r = 2.5 and higher the proposed technique
closely reproduces the range moments obtained by the Gaussian simulation
method. For values of r = 1.5 and r = 2.0, the proposed technique
underestimates the stress ranges, as expected for small values of r.
Thus, the proposed technique should be an accurate alternative to the
Gaussian simulation method for 2-block psd's with r = 2.5 or greater,

It was found by comparison of the computation times required by
the two techniques that the AR(1) superposition method was 9 to 13
times faster than the Gaussian technique. The Gaussian simulations
used 40 harmonic components (N=40) and required approximately 15 minutes
and 20 seconds (on an IBM PC AT) to synthesize 4000 extrema. The AR(1)
superposition technique required only 70 to 100 seconds, to simulate

the same number of extrema.
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FIGURE 5.3

AR(1) SUPERPOSITION ALGORITHM

1) Use AR(1) unimodal technique to generate an extrema sequence from
the 1-block psd component (see Figure 4.3)

2) Divide this sequence into two arrays of component sequences, each
scaled by that component's relative contribution to the process variance:
XL(N1), XH(N2)

3) Check that XL(1) and XH(1) are of same sign. If not, drop first
point of XH array.

4) Using the following, step through the high frequency component array,
doing interpolation and superposition to form the peak/valley sequence
for the 2-block psd:

low frequency component interpolation counter
high frequency component interpolation counter
index for high frequency array, XH(N2)

index for low frequency array, XL(N1)

index for resultant time history array, Z

flag for low frequency interpolation

flag for high frequency interpolation

O V3 = a3 x
L 1§ A T R | B [ 1}

a) Initialize: k=1, 1=1, m=1, n=1, g=r, s=1/r

b) Do direct superposition if i = q
1. increment low frequency index:
1=1+1
2. do superposition:
Z(m)=xh(i)+x1(1)
3. increment Z array index and flags q and s:

m=m+1
n=n+l
q=n*r
k=k+1
s=k/r

4. return to b)

c) Do low frequency interpolation
1. compute fraction
e=s-INT(s)
2. do interpolation using equation 5-1
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3. do superposition
Z(m)=xh(i)+y
4. increment Z array index and flag s
m=m+1
k=k+1
x=k/r
d) Do high frequency interpolation if (i+1) is greater than g
1. increment low frequency index:
1=1+1
2. compute fraction
e=q-INT(q)
3. do interpolation using equation 5-1
4. do superposition Z(m)=x1(1)+y
5. increment Z array index and flag q
m=m+1
n=n+l
g=n*r
e) Repeat until out of data

5) Sort the resulting array Z(m) to remove any intermediate points
which are not peaks or valleys

6) Perform rainflow or statistical analysis on Z(m) as required

77



RANGE MOMENT E [R"3]

RANGE MOMENT E[R"3]

40

a) r =15
354 a r=1.5 GAUSSIAN

~q

30
251
20—
15
10

5—

o r={ 5 AR

0
0 ?1 72 f3 ?4
VANMARCKE 'S ‘PARAMETER, ‘g

L |
.6 .700 .B0O  .800

40
b) r = 2.0
35+ a r=2.0 GAUSSIAN

30~
25
20
154
10

5-1

o r=2.0 AR

0
0 4 2 3 a
VANMARCKE 'S PARAMETER, q

T T 1 T 1
. .6 .700  .B00 .800

Figure 5.4 Pange Moment Comparison AR(1)
Superposition and Gaussian Techniques: m = 3




RANGE MOMENT E [R"3]

RANGE MOMENT E[R™3]

40

354

30

2577

20

15

10

5—

c) r=2.5
a r=2.5 GAUSSIAN

o r=2.5 AR

0

40

|

0 Ti .2 F3 4
VANMARCKE 'S PARAMETER, g

1 { i

30

25

20+

157

10

5—

d) r = 3.0
a r=3.0 GAUSSIAN

o r=3.0 AR

0

0 fi .2 !3 4
VANMARCKE 'S ‘PARAMETER, g

T T T T
.6 .700

Figure 5.4 (Continued)

79

T
.800

T
.900

b




RANGE MOMENT E[R"3]

RANGE MOMENT E [R"3]

40

35+

30

25

20

15

10

5—

e) r = 3.5

a r=3.5 GAUSSIAN

o r=3.5 AR

0

0 42 3 4
VANMARCKE 'S ‘PARAMETER, ‘g

7
.900

40

35

25

20

15

10

5—1

f)r=4.5

o r=4.0 GAUSSIAN

o r=4.0 AR

0

3

0 4 2 .3 .4
VANMARCKE 'S PARAMETER, q

Figure 5.4

80

(Continued)

T
.700

T
.800




RANGE MOMENT E[R"3]

RANGE MOMENT E[R"3]

40

35-

30

25

20—

15+

10

S-J

g) r=4.5
o r=4.5 GUASSIAN

o r=4.5 AR

0

i !

0 A .2 f3 4
VANMARCKE 'S PARAMETER, g

T
.700

T
.800

T
.900

40

354

30

251

20

15

10+

51

h) r = 5.0
a r=5.0 GAUSSIAN

o r=5.0 AR

0

Figure 5.4

T

0 4 2 3 4
VANMARCKE'S PARAMETER, q

(Continued)

T
.700

T
.800

T
.900




RANGE MOMENT E [R"3]

RANGE MOMENT E[R"3]

40

30

25

20

15

10

5—

i)r=17.5
a r=7.5 GAUSSIAN

o r=7.5 AR

0

40

0 ?i .2 Y3 .4
VANVARCKE 'S PARAMETER. ‘g

!
.700

T
.B00

-
.900

354

30~

25

20

154

10—

5-—

j) r =10.0
o r=10.0 GAUSSIAN

o r=10.0 AR

0

0 Ti !2 !3 .4
VANMARCKE 'S PARAMETER, ‘g

Figure 5.4

(Continued)

82

1
.700

T
.800

T
.900




RANGE MOMENT E [R"5)

RANGE MOMENT E[R"5]

800
a) r=1.5
700~ o r=1.5 BAUSSIAN or={5 AR

S

600
500
400
300
200

100

0 7 ] T T T T

0 R .2 .3 4
VANMARCKE 'S PARAMETER, q

(=2}
~J=
<
<
m-
<
<

800

"D-

©

b) r = 2.0
7001 4 r=2.0 GAUSSIAN o r=2.0 AR

600
500
400+
300
200

100

0

0 4 .2 3 .4 s .00 .Boo
VANMARCKE 'S PARAMETER, q

Figure 5.5 Range Moment Comparison AR(1)
Superposition and Gaussian Techniques: m = 5

83




RANGE MOMENT E[R"S]

RANGE MOMENT E [R"5]

800

700

600

500

400

300

200

100

0

c) r=2.5

o r=2.5 GAUSSIAN

o r=2.5 AR

800

1

0 4 2 3 T
VANMARCKE 'S PARAMETER, q

7
.900

700

600+

500

400

300

200

100

0

d) r = 3.0

a r=3.0 GAUSSIAN

o r=3.0 AR

¥

0 4 2 3 4
VANMARCKE'S PARAMETER, q

Figure 5.5

84

(Continued)

700

800

800




AANGE MOMENT E [R™5]

RANGE MOMENT E[R"5]

800

700

600

500

400

300+

200-

100

e) r=3.5
o r=3.5 GAUSSIAN

o r=3.5 AR

0

800

0 Ti .2 .3 4
VANMARCKE 'S PARAMETER, ‘g

700+

600~

500

400-

300-

200-

100+

f)r=4.0
o r=4 (0 GAUSSIAN

o r=4.0 AR

0

0 4 2 13 T
VANMARCKE 'S PARAMETER, g

] L

Figure 5.5

85

(Continued)

00

800

900




RANGE MOMENT E [R"5]

RANGE MOMENT E [R"5]

800

700

600

500

400

300

200

100

g) r = 4.5
s r=4.5 GUASSIAN

o r=4.5 AR

0

L}

0 4 2 3 4
VANMARCKE'S PARAMETER, q

.500

800

]
.900

800

700

600

500

400

300

200

100

h) r = 5.0
a r=5.0 GAUSSIAN

o r=50 AR

0

Figure 5.5

0 4 2 3 4
VANMARCKE 'S PARAMETER, q

(Continued)

86




AANGE MOMENT E [R"S5]

RANGE MOMENT E[R"5)

800

700

600

500+

400

300

200

100

i) r=17.5

a r=7.5 GAUSSIAN

o r=7.5 AR

0

L]

0 4 2 3 7
VANMARCKE 'S PARAMETER, g

900

800

700+

600

500

400

3004

200

100+

j) r =10.0

a« r={0.0 GAUSSIAN

o r=10.0 AR

0

T

0 .4 2 3 .4
VANMARCKE 'S PARAMETER, g

Figure 5.5

87

(Continued)

700

T
.800

800




{x1000)

RANGE MOMENT E [R"7]

(x1000)

RANGE MOMENT E[R"7]

22
20
18-
161

14+

2—1

a) r = 1.5
a r=1. 5 GAUSSIAN

o r=1.5 AR

0

1

0 Yl .2 ?3 .4
VANMARCKE 'S ‘PARAMETER, ‘g

.900

22
20+
18-
16
-
124
10
8
6 —
4~

2

b) r = 2.0
a r=2.0 GAUSSIAN

o r=2.0 AR

0

-1

0 4 2 3 4
VANMARCKE 'S PARAMETER, gq

.6

Figure 5.6 Range Moment Comparison AR(1)

Superposition and Gaussian Techniques: m

88

N
S

7

.900

xS




(x1000)

RANGE MOMENT E[R"7]

(x1000)

RANGE MOMENT E[R™7]

22

20
18-
16

14

c) r=2.5

&« r=2.5 GAUSSIAN

o r=2.5 AR

0 4 2 3 T
VANMARCKE 'S PARAMETER, q

.700

T
.800

r
.900

22
20
18-
16
14—

12+

4=

Zd

d) r = 3.0

o r=3.0 GAUSSIAN

o r=3.0 AR

0

1

0 4 .2 .3 .4
VANMARCKE 'S PARAMETER, q

Figure 5.6

89

(Continued)




(x1000)

RANGE MOMENT E[R"7]

{x1000)

RANGE MOMENT E [R"7]

22

18+
161
14~
124
10
8
6+
4

2-

e) r = 3.5

a r=3.5 GAUSSIAN

o r=3.5 AR

0

0 Y! .2 f3 ?4
VANMARCKE 'S PARAMETER, ‘g

22

18-
16
14—
12

10

f) r = 4.0

a r=4 .0 GAUSSIAN

o r=4.0 AR

0 1 2 '3 4
VANMARCKE 'S PARAMETER, q

Figure 5.6

90

(Continued)

.900




(x1000)

RANGE MOMENT E[R"7]

(x1000)

RANGE MOMENT E [R"7]

22
20+
18-
16~

14

g) r=4.5

o r=4.5 GUASSIAN o r=4.5 AR

22

0 1 2 3
VANMARCKE'S PARAMETER, q

1 LI 1

.700

o
o
(=)

(0~
<«
a

20
18-
16-
14
12
10
.
6
4
2

h) r = 5.0

a r=5.0 GAUSSIAN o r=5 0 AR

0

0 1 2 3 N
VANMARCKE 'S PARAMETER, q

¥ I v |

Figure 5.6 (Continued)

91

.700

T
.800

T
.900




(x1000)

AANGE MOMENT E(R"7]

(x1000)

AANGE MOMENT E[R"7]

22
20
18-
16

14—

2—1

i) r=7.5
a r=7.5 GAUSSIAN

o r«7.5 AR

0

1

0 fi .2 f3 .4
VANMARCKE S PARAMETER, ‘g

|}
.800

1
.900

22
20
18-
16—
14—
12-

10

j) r = 10.0

o r=10.0 GAUSSIAN

o r=10.0 AR

0 4 2 .3 .4
VANMARCKE'S PARAMETER, q

Figure 5.6 (Continued)

92

T
.800

T
.900




CHAPTER 6
CONCLUSION

The objective of this investigation was to develop a simulation
technique which synthesized the extrema of a random process more effi-
ciently than the Gaussian simulation technique. The incentive for
such a technique exists because the statistic required from a stress
time history for stochastic fatigue analysis is a statistic of the
extrema - the expected range moment, E[R"]. Considerable computational
effort is wasted in the Gaussian technique because the entire time
history is simulated, while only the resulting extrema are necessary
for estimating E[R™]. An extrema-synthesizing technique should be
expected to greatly reduce the required computation time because nearly
all of the values generated are extrema.

A general description of ARMA(p,q) stochastic models was presented
and an AR(1) model was proposed for simulating the extrema of processes
having unimodal psd's. The proposed AR(1) technique was found to produce
expected rainflow stress range moments, E[R™], which compared very
well with those computed using the Gaussian technique. A considerable
savings in computation time was realized, with the AR(1) technique
averaging 11.7 times faster than the Gaussian technique.

An adaptation of the AR(1) technique was proposed for processes
having bimodal psd's. The adaptation involves using two AR(1) processes
in order to simulate the extrema due to each mode, and then superimposing
the two sequences of extrema, taking into account the frequency separa-
tion between the modes of the psd. An intermediate step necessary

prior to the superposition is an interpolation between the extrema
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of one component to provide points in that component time series corre-
sponding to those in the other component.

The generation of these intermediate values was not found to be
detrimental to the overall efficiency of the technique as it was found
to be 9 to 13 times faster than the Gaussian technique. A comparison
of the results for E[R™] from the two techniques showed that the AR(1)
superposition technique produced comparable values for frequency ratios
of r = 2.5 and greater. As expected for small values of r, the proposed
technique was found to underestimate E[R™ for r = 1.5 and r = 2.0.

The effects of a random stress process's psd shape characteristics
were also studied as a part of this investigation. For bimodal psd's,
the contribution of the two components to the expected fatigue damage
rate was determined. The range of area ratios for which both components
must be considered was determined to be from b = 0.01 to b = 10 for
frequency ratios from r = 1.5 to r = 15 (and material S-N curves with
m = 3,5 or 7). For bimodal psd's outside this range, the expected
damage rate may be determined with sufficient accuracy for practical
fatigue analysis by considering the psd to be unimodal.

The effect of high frequency truncation on the expected damage
rate was also studied for two unimodal psd's. A shape or truncation
parameter defined as the ratio of the Vanmarcke bandwidth parameter
for the truncated psd to that for the "infinite-tail" psd, denoted
q/qo, was found useful to describe the truncation frequency required
for a desired analysis accuracy. This parameter appeared to account
for the different decay rates of the tails of the two psd's studied,

such that the expected damage rate vs. q/q0 could be described as
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a unique curve. From this data, a value of q/qo = 0.6 was proposed
as a truncation point for unimodal psd's for use in practical fatigue
analysis.

The effect of psd bandwidth and shape on the correlation of the
extrema of the process was also studied. A linear regression of Py
the correlation between adjacent extrema or lag one correlation, on
Vanmarcke's bandwidth parameter, q, was proposed as a practical descrip-
tion of the change in Py with psd bandwidth for unimodal psd's and
bimodal psd's within the region of significance (b = 0.01 to b = 10).

The behavior of higher lag extrema correlations and a possible
relationship to the autocorrelation function of the random process
were also discussed. No analytical relationship is known at this time,
however. This 1is an area requiring further research if a direct
ARMA(p,q) model of the extrema of bimodal psd processes is desired

as an alternative to the AR(1) superposition technique presented herein.
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APPENDIX B
A NOTE ON THE CORRECTION OF RANGE MOMENTS FROM SIMULATED
STRESS TIME HISTORIES
The range moments computed from a simulated time history may exhibit
a considerable amount of scatter or statistical inaccuracy for a number
of reasons. First, the random number generation algorithm used in
the simulation will produce pseudo-random numbers which do not exactly
fit the desired theoretical distribution. Second, any time history
must also be of finite length, and is not the desired infinite sample

of an ergodic process. Third, in the Gaussian simulation technique,

~the number of terms in the summation must be very large for the Central

Limit Theorem to hold and an "exact" simulation result. In practice
only 20 to 40 terms are used. Finally, the simulated time history
is often sampled at a relatively small number of discrete time-points
per cycle which may not exactly correspond to the times of occurrence
of the extrema.

Lutes and Zimmerman (21,42) used an approximate procedure, which
has also been applied to the results of this study, to correct for
the ‘“imperfections" in the simulated sequence of peaks and valleys.
For example, before applying the correction Zimmerman found that the
range moment (for m = 7) from 10 different simulations of the same
process could vary as much as *14% from the mean value. The
corresponding corrected moments varied only *1% from the mean.

The correction is based on the fact that the theoretical distri-

bution of the peaks and valleys is known, Equation 2-20, and it corrects
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for deviations of the simulated sequence from that distribution. The
corrected range moment is defined by:

m
E[Z ]T

E[Rm]c = _E[z"‘]
E

E[R"]; (B-1)
in which:

E[Rm]C = corrected range moment
E[Rm]E = empirical range moment (from simulation)
E[Zm]T = theoretical moment related to peak distribution

E[Zm]E = empirical moment related to peak distribution (from simula-

tion)

The Jjustification for this correction is that the stress ranges
are computed from the peak values, so that errors in the peak distri-
bution moments should introduce comparable errors in the stress range
moments. Two slightly different definitions of Z have been used to
apply the correction. In the first definition Z was the absolute value
of any peak or valley, so it is distributed as the absolute value of
a peak. The alternative definition was to take Z as a peak value or
the negative of a valley value, so it has simply the peak distribution.

The two definitions give essentially the same correction, so that
the choice between them is a matter of convenience. For example, if
m is an odd integer and {X(t)} is normal, defining Z as a peak value
or negative of a valley value allows one to analytically evaluate the
term E[Zm]T in Equation B-1 (see Reference 21, Appendix II). For other

cases this term must be evaluated numerically.
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APPENDIX E
Relating Extrema Correlations to the

Autocorrelation Function

The simulation of the extrema of a random process by means of
an ARMA(p,q) model requires knowledge of the correlation of the extrema
to estimate the parameters in the model. This appendix describes an
effort that was made to formulate an analytical relationship between
the correlation of extrema of a random process and its autocorrelation
function.  Although the problem remains unsolved, it is hoped that
the work described herein may provide an indication of the direction
future efforts should take. In approaching this problem it seemed
more promising to attempt first to approximate the autocorrelation
function, RXX(T), given that the extrema correlations were known.
This information was then to be applied to the inverse problem of com-

puting the extrema correlations from a known autocorrelation function.

E.1 The Step-Type Model

This section focuses on the way in which Rxx(t) will be affected
by the randomness of the occurrence time of the extrema of X(t) when
the correlation values for the magnitudes of the extrema are presumed
to be known. Much of the effort is devoted to an attempt to find a

reasonable model for a set of occurrence times (tl,tz,t3,---). Let:

in which Pj is an extremum (either a peak or a valley) and the T values

are like the times midway between a peak and a valley. The normalization
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used for X(t) makes E[Xz(t)] = 1. This is arbitrary, but convenient
in that it makes pXX(T) = RXX(T). Assume that the rj's form a random
sequence. Then a given interval t, (t,t + 1), may include any number

of Tj arrivals., Let:

N(s) = Number of arrivals in (0,s)

N(t) = Number of arrivals in (0,t)

*

N® = N(S) - N(t) = Number of arrivals in (t,S)

Then: N° = Even integer if X(t) and X(s) are both peak values or both
valley values

N" = 0dd integer if one of X(t) and X(S) is a peak and the other

is a valley
Let p(j) = op p be the correlation coefficient for extrema. Then:
k' k+j
_ 2 i . 2. i
E[Pkpk+j] = mp( 1) + Opp(J) (E-1)
and:
*
ELX(E)X(S) [N*] = —— [m 2-D)N + 6 Zo(v¥) (E-2)
m-+o P P
p p
Thus:
RXX(T) = E[X(t)X(S)]
= —L 7PN = 1m 2(-1)3 + 6 2(4)] (E-3)
2, 2.t p p
m o~ j=0
p p
To evaluate P[N* = i1, let Aj = Ti41 " T; denote the interval length,

also a random variable. Let A be the event that t and t + t are in
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the same interval, or the event that t + t < Ti+1 when T; <t §_1j+1.
Presuming that t is randomly located within Aj gives:
1-4 foruo>n
P[t <t +1-1|ter,, A, = u = (E-4)
b 0 foru <

Thus:
A) = Au)P(A]A, = u,ten, -
P(A) = | pAJ(u) ( IAJ u,t AJ)du (E-5)
Assuming that the Aj's are identically distributed, then:

P(A) = P(N* = 0) = P(N* < 1) = | Py(u)(1 - T)du
T

P(a > 1) - T% p,(u)du (E-6)
T

The Poisson process 1is most commonly used for counting arrivals.
It gives an exponential distribution for interarrival times, but that
is not sufficiently flexible for the present problem. Rather, assume
that the Aj's are gamma distributed and that there exists another related
Poisson process with mean rate A and exponentially distributed inter-
arrival or wait times. Let M(t) = the number of arrivals in (0,t)
for this new process, and let every kth arrival of the new process
be an arrival in the original (11,12,13,---) process. (The parameter

k can be chosen later to give a reasonable approximation.) Thus:
N(t) =i if and only if ik < M(t) < (i + 1)K

and:
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P(a > 1) = P[N(xr) =0 ] = P[M(7) < K]
k-1 ()\T)ie-AT

j=0

P[TK > 1] (E-7)

in which Tk denotes the time of the kth arrival in the new process.

Then:
k-1 i -At
_ d (x1) e
pr (1) = -5 [ ] 55—
TK dt i20 it
-\t i=-1 -a1
_ ) )\ e
- Z Z A () i)l
k-1
. AT) =T _
Now for k = 1:
- -AT
pr (1) = xe (E-9)
1
1 2 1
So: my =-=-and oo = =
T1 )\ T1 2
: -k 2 _ k
Thus: mTk =5 and oTk 5

Now for large k, a normal approximation to P[Tk > 1] gives:

1’
©

P[Tk > 1]

k/)\ - T)
vk/x

k - >\T)
vk

¢ (

= ¢ (

(E-10)

k - At -
o ( i ) (E-11)

Thus: P(a > 1)
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AT pIM(7) < k - 1]

.
Also: { G Ppluldu = = i

AT
o1 P[Tk_1 > 1]

ATq)(k-l-)\T)
k-1 k-1

An expression for P(N* = 0) can then be written as:

P(N*=0)=P(N*<1):¢(k‘1‘XT)_k)\-T1®(k‘l')\T

13 Yk -1

(E-12)

(E-13)

Assuming that t is in the interval Bss there are two cases which,

if they occur, will cause the event [N* > 1]. Either there are 2 or

more short intervals, A. + A

. R
j i+l < 1, Or A1 A

i+l

< 1 and (T1+1 -t) > -Ai*l' Thus:
* =
PIN® > 1] = P[a; + 44, < 1]

PIA; + 85,0 > Tabyyg < Toty

41 7 2T B4y

and presuming 7., - t to be uniform on (O’Ai) gives:

*
PIN™ > 1] P[Ai + BAipy < T] + P[Ai thi > T t >t - Ai+1]

T [>o]
Py * 0y <SI+] [, (W,

(v) (—Y)dudv
0 T-V +1

i u

Similarly, in general, for [N* > j]:

PIN* > j] = PLA; + Bypg + ooe * 85,0 < 1]

+Ai+2+'°'+Ai+j

+
O~

| pA.(u)pA_+
- i

v i 1

T
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> 1, With Ai+

1

(E-14)

(E-15)



Assuming that the Ai's are i.i.d. with the gamma distribution, G(k,\),

then By B4 is G(2k,)\) distributed. Thus:

P[a<1]=1- Z J—lJ—— (E-16)

PlA; + 85, < 1] =1- zj:)l (—*—T)JJ,—M (E-17)
and the pdf's are:

Py, (V) = A((Ak“)_k_ll)e!_w (E-18)

pAi+l+Ai+2+"'+A1‘+j(V) = A(A(vj)ka-—lf)-!Au (£-19)

Next the assumed G(k,)) distribution of A can be approximated by N(%al%)
A

to give:

PIo < 1] = o(Toth) = 02Tty (E-20)
and similarly for P[Ai Bt e ¥ Ai+j < t]:

PLA *+ 844y % ove ¥ gy < 1] = d)(%jﬁ) (E-21)

These expressions then give the first terms in PIN* > 1] or PIN* > j].
Working with the inside integral of equation E-15 next, substituting

equation E-18 for p, (u) gives:
i

o - v _ T 1 A()\ )k 1 Au d
J, e 06t s v ] GRS,
© k-2 _-\u
- kar - 1V) f M?;)_ 2()31 du (E-22)
=V
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Now the integral in this expression can be recognized as

P[Z > 1 - v] for a random variable Z which is G(k - 1, A) distributed.

Approximating this with a rl( k ; 1, k 'él ) distribution gives:
A

k-1
L M- T
J Ja () (= )du = 212 f)' ( K= 1/ )
. A(kT - 1v) sV - ;)--1'( * 1y (E-23)

(v) as N(%F, J%) gives:
A

Approximating p
BisptBisgt ¥y
Py w4y, (V)= /I_.exp [-5 (V/—'_J—ﬁ—)]
e N I
A
. A _ (v - jk) ] (E-24)
/_ank 2jk

Now the double integral of equation E~15 can be written as:

AZ (Av - jk) ]¢[A(V -1) -k+ l]d (E-25)

(k - 1)/275k o J (x - viexsl- 23k k-1

This can be written in dimensionless form by letting Av = u, v = u/x,

and dv = du/x:
1 (u - ) u -t -k+1
AT - u)expl- o E-26
(k_l)_?_JJ(r Jexpl- - lo A a (E-26)
The equations necessary to compute P[N* = j] can be summarized as:
k = At AT k - 1- 21
PN*: =(p - Q) E_27
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PIN* > §] = (2T —dK)

/jk
+ 1 T (v - §K)% U -t -k + ] )
K D/ é (xt - u)expl 23k Jol =T Jdu (E-28)
PIN* =1] =1 - P[N* > 1] - P[N* = 0] (E-29)
PIN* = j] = P[N* >j - 1] - P[N* >3], j = 2,3,... (E-30)

To evaluate the wusefulness of this model, an example case was

evaluated for a 1-block psd with wy = 6.0, wy = 9.0, for which a, = 0.975
and g = 0.115. Rice's peak distribution was evaluated for this psd
to determine mg = 1.4932 and og = 0.4576, and from simulations the
extrema correlations were estimated as Py = -0.8334, P 0.5095, p3 = -

0.1888, p, = -0.0248 and pj = 0 for j > 5.
A value of k = 1000 was found to give a reasonable estimate for
the first two extrema of Rxx(r), as shown in Table E-1. A larger value

of k could be used to better fit to the first extrema of R,,(t), but

XX
at the cost of worsening the agreement for the later extrema. In addi-
tion, k = 1000 corresponds to a coefficient of variation for A
ﬁi = 0.0316, while the estimate from simulation was found to
A 0.20, which corresponds to k = 25. This indicates that the
distribution for A required for the model to fit RXX(T) is much narrower
than the distribution actually observed. It was also found that this
model failed to produce a decay in the estimated autocorrelation extrema
which was as fast as that of the actual autocorrelation function, as

shown in Table E-1. Neither could the beat effect, which is evident
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TABLE E-1

Comparison of Rxx(r) Extrema Values to Values
Predicted by Step-Type Model

.BXX(T) Extrema Step-Type Estimate
-.94 -.91
.76 .82
-.51 -.74
.25 .68

1-block psd: w = 6.0, wy = 9.0
0.975, q = 0.115

%2
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in RXX(T) (see Figures 3.19-3.24 for example), be reproduced by this

model.

E.2 A Normal Approximation for the Distribution of N*

Rather than using equations E-27 to E-30 to find PIN*

jl it
is convenient to use a normal approximation for the distribution of

*

N". Using the wusual half-integer approximation for application of

the normal distribution to a discrete random variable gives:

J+0.5-mx*
PIN* >3] =1-0 ( o N_)
J+ 0.5 - m»
PIN* < §1 = o ( o N )
This can be written as:
PIN* = 31 = 8 (E-31)
* — * .+ _1-28
PIN" < j] = PIN" > j] = —— (E-32)
with:
- 1-g_1+28 _
o(u) =1 - 5 5 (E-33)
if
My* = J
and
L= 0.5
ON*

Obviously my* = j only at the time t =-%% where ) 1is the arrival




rate in the Poisson process (for which every kth arrival counts as
one N* arrival). If one neglects the probability that IN* - My |

> 2, then this gives:

PIN* = j|ar = jk] = B , (E-34)

*

PN

PIN* = § - 1|ar = jk] = LB (E-35)

j+ 1t = jk] >

Substituting into equation E-3 gives:

AT
o1 2, 1k
RXX(T) = ;@‘:‘;ﬁ {(28 - l)mp(-l)
p p
+ ol [ E) + 352 [T - 1)+ oBF + 1ID) (E-36)

Let Rxx(rl) denote the value of the first valley of RXX(T). Using
an observed value of RXX(T) along with o = 1 and observed values
of 01 and p,» One can solve equation E-36 for g. The value of u corre-

sponding to this first valley is then found from equation E-33 as:

u=01¢ ; B (E-37)

Based on the results for Poisson arrivals it 1is reasonable to

presume that o,* grows like /myx. This gives u, = J#— for j > 1. From
N N N
equation E-33 one then finds the g for use in equation E-34 for PIN* =

jl. In general one must consider 1 5 Bto give P[N* > j] and P[N* < jJ;
1 - o(3u) to give P[N* > j + 1] and P[N* < j - 1], etc. As j becomes
large, the values for P[N* = j + 2] = P[N* = j - 2] become significant
and must be incorporated into the model. In this study they were

included when they exceeded a value of 0.001. A reasonably good estimate
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of the overall decay of RXX(T) as T grows results from this model,
as shown in Figures E-1 through E-7. However, the beat effect in RXX(T)
is still not accounted for. In addition, the value of u or 8 used
to fit the model to a particular RXX(T) must still be related, if only

empirically, to some parameter of either RXX(T) or the psd.

E.3 A Phase-Angle Approximation

An improvement to the step-type model was sought by considering
X(t) to behave harmonically in the neighborhood of an extremum. Partic-
ularly for a narrowband process and with the time lag t equal to a
small number of half-periods there is 1little uncertainty about how
many extrema have occurred, but there is uncertainty about the precise
location of the anticipated extremum. To illustrate, let the initial

time be at a peak and the second time be near the following valley:
X(t) = P1

X(t + 1) = V1 coso

1

T = (E-38)
"p
with 6 a random variable, |8| small and mg = 0. Then:
ELX(t)X(t + ) |X(t) = Pl] = E[Plv1 cos6] (E-39)
Assuming P1 and V1 are independent of 6 gives:
E[Plv1 cosf] = E[Plvl]E[cose]
= [-m2 + 020 JE[cos6] (E-40)
p Pl
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Assuming that RXX(T) for E[Xz] = 1 1is approximately equal to
E[X(t)X(t + 1)[X(t) = P,] normalized by E[PZ] gives:

2
2P 1 Elcoso] (E-41)

The small 6 assumption gives:

2 4
E[cosB] ~ 1 - E[g 1 . EE& ]

(E-42)
and assuming 6 is normally distributed gives:
2 4
% , %
E{cosB] = 1 - v + g (E-43)

An attempt to quantify 6 was made by relating it to T, the "time" between

extrema. For n half-cycles:

T=nm+9o (E-44)
so that:
mp = nm
2 _ 2
OT 06
%
VT = ﬁ; (E-45)

Thus, knowledge of Ve would suffice to give a value for o Based

6
on the results for Poisson arrivals it seems reasonable to expect VT
to be approximately the same as VN* for the number of extrema in an
interval of length m.. An equation is available for E[N?] (6,39),

in which N is the number of zero crossings of {X(t)} in (0,T):
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T
2 2 33 34

E[N"] = E[N] + <5 [(T - 1)

n? o [1 - rP(1)]%/2

M M
34 -1 34
x{1 + (M2 > )1/2 tan ((Mz T2 )1/2) dt (E-46)
33 34 33 34

in which:

r(t) = Ryy(1)

Mij = cofactor of (ij)th element of the covariance matrix of
the random variables X(tl),X(tZ), i(tl), i(tz),
with v = t2 - t1

Letting N* denote the number of extrema occurrences, the above
equation can be used to compute VN* because E[Nz] for {i(t)} gives
E[N*Z] for {X(t)}. Empirical simulation results were also used to
compute VT for comparison with VN* computed using equation E-46. As
shown in Table E-2, the assumption that VN* = VT is not supported by
these results, although the trends of increasing V with increasing
bandwidth are quite similar. VN* was also computed from equation E-46
for E[N*] = 1, 2, 3 and 4 for psd 1 of Table E-2. Table E-3 compares
these results to VT observed from simulations and also to the VT values
which would be required in order that equations E-41 and E-43 would
match empirical values of RXX(T). Again, the empirical VT values are
up to 32% smaller than the calculated VN values. Even more serious,
though, is the discrepancy in computing Rxx(r). The VN values are
as much as five times larger than what one would need for VT to make
equation E-41 be correct. The serious discrepancy between empirical

VT values and the values required for equation E-41 indicates that
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some assumptions made in deriving equation E-41 must be in error.
In particular, empirical data from simulations indicate that the terms
[PV] and [cos6] in the model are not independent, so the following

has been proposed to account for the correlation:

E[PV cos6] = E[PV]E[coso] + PPV cost (E-47)

%py%cos6

For practical use, further simulation data were used to compute

an empirical correction factor, K, to account for the correlation:

-m2 + 02p1 og og
"™ * %

Figures E-8 and E-9 show K vs q and og vs q, respectively, for 1-block

unimodal and smooth unimodal psd's; that is, psd types a) and c) of

2
6

unimodal psd's are significantly different from the values observed

Figure 3.1. Note that these data indicate that K and ¢ for the smooth

for the 1-block psd, for q > 0.3. That is, bandwidth seems to have

2

a much more significant effect on K and Tg

for the smooth unimodal

psd than for the 1-block psd.
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GV WN -~

Table E-2

Comparison of VN* to VT for 5 Unimodal PSD's

1-Block PSD
(Equation)
Wy W, XN* E - 46 - !I (Empirical)
6.0 9.0 .3325 .2260
4.5 8.0 .3838 . 2667
4.5 9.0 .4100 . 2997
3.0 7.0 .4355 .3159
3.0 10.0 . 4687 . 3508
Table E-3

Vy* Compared to Vo for E[N*] = 1,2,3,4
(1-Block PSD, w = 6.0, w, = 9.0)

(Equation)

Voo E - 46+ vy (Empirical) Y; (Required)
.3325 .2260 .0651
.2329 .1754 .0846
. 1884 .1529 .0913
.1616 .1380 .0922
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E.4 A Second Simplification to the Step-Type Approximation

Because of the results of the previous section, showing that V x

N
# VT’ the following development was in an attempt to relate Vy* to

VT' Assume a simple distribution for N* of:

PIN* = j1 = 8

PIN* = j - 1) =PIV = j+1] =158 (E-49)
Then:

EIN"] = j

EIN?]=3%+1-8
VAR[N*] = 1 - 8
Vyx = /T - 8/ (E-50)
Again assuming that A is gamma distributed, G(k,A), gives:
=k
E[a] 3
VAR[A] = &
A
VA = 1//k (E-51)

Recall the previous result for P[N* = 0], equation E-27:

P[N* - 0] = Q[k 'k)\T] _ AT [k -1- AT] (E‘SZ)

¢
vk (k- 1) Yk = 1
To fit the first extrema of RXX(T), set At = k:

PIN* = 0] = 3 - 5 ¢ [/E:%‘T] (E-53)
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Empirical data for VA can be used to compute k as:

1
k = = (E-54)
V2

A
A value for P[N* = 0] can be computed from equation E-53, and a value
for B8 from E-49. Finally, a value for VN* =/T-8 can be compared
to the value of VN* computed using equation E-46 for E[N* = 1]. The
results of the comparison are summarized in Table E-4 for five unimodal
psd's. The relative agreement between the two calculations for VN*
indicates that equation E-46 might be used to compute VN* for a given

= —%fﬁ-could be used to estimate P[N* = j], P[N*

psd, from which VN*
= j - 1], and P[N* = j + 1] according to equations E-49. However,
a comparison of this approach with the results of the normal simplifica-
tion to the step-type model, Section E.2, indicates that the distribution
for N*, computed as outlined above, is not as sharply peaked as was
found to be required in Section E.2 for the step-type model to fit
the extrema of RXX(T). This is shown in Table E-5 in which the value

of B computed from E-49 is compared to the value computed from equation

E-36 for the five psd cases of Table E-4.
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Table E-5

Comparison of B Values

PSD Case B, Equation E-49 B, Equation E-36
1 0.862 0.990
2 0.838 0.969
3 0.831 0.957
4 0.824 0.939
5

0.811 0.890
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